Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Remote heart rate measurement from highly compressed facial videos : an end-to-end deep learning solution with video enhancement

Yu, Zitong; Peng, Wei; Li, Xiaobai; Hong, Xiaopeng; Zhao, Guoying (2020-02-27)

 
Avaa tiedosto
nbnfi-fe202003259261.pdf (1.238Mt)
nbnfi-fe202003259261_meta.xml (40.57Kt)
nbnfi-fe202003259261_solr.xml (34.91Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICCV.2019.00024

Yu, Zitong
Peng, Wei
Li, Xiaobai
Hong, Xiaopeng
Zhao, Guoying
Springer Nature
27.02.2020

Z. Yu, W. Peng, X. Li, X. Hong and G. Zhao, "Remote Heart Rate Measurement From Highly Compressed Facial Videos: An End-to-End Deep Learning Solution With Video Enhancement," 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, pp. 151-160.

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICCV.2019.00024
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202003259261
Tiivistelmä

Abstract

Remote photoplethysmography (rPPG), which aims at measuring heart activities without any contact, has great potential in many applications (e.g., remote healthcare). Existing rPPG approaches rely on analyzing very fine details of facial videos, which are prone to be affected by video compression. Here we propose a two-stage, end-to-end method using hidden rPPG information enhancement and attention networks, which is the first attempt to counter video compression loss and recover rPPG signals from highly compressed videos. The method includes two parts: 1) a Spatio-Temporal Video Enhancement Network (STVEN) for video enhancement, and 2) an rPPG network (rPPGNet) for rPPG signal recovery. The rPPGNet can work on its own for robust rPPG measurement, and the STVEN network can be added and jointly trained to further boost the performance especially on highly compressed videos. Comprehensive experiments are performed on two benchmark datasets to show that, 1) the proposed method not only achieves superior performance on compressed videos with high-quality videos pair, 2) it also generalizes well on novel data with only compressed videos available, which implies the promising potential for real-world applications.

Kokoelmat
  • Avoin saatavuus [37559]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen