Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hot or not? : robust and accurate continuous thermal imaging on FLIR cameras

Malmivirta, Titti; Hamberg, Jonatan; Lagerspetz, Eemil; Li, Xin; Peltonen, Ella; Flores, Huber; Nurmi, Petteri (2019-07-22)

 
Avaa tiedosto
nbnfi-fe202003249098.pdf (1.288Mt)
nbnfi-fe202003249098_meta.xml (41.99Kt)
nbnfi-fe202003249098_solr.xml (37.37Kt)
Lataukset: 

URL:
https://doi.org/10.1109/PERCOM.2019.8767423

Malmivirta, Titti
Hamberg, Jonatan
Lagerspetz, Eemil
Li, Xin
Peltonen, Ella
Flores, Huber
Nurmi, Petteri
Institute of Electrical and Electronics Engineers
22.07.2019

T. Malmivirta et al., "Hot or Not? Robust and Accurate Continuous Thermal Imaging on FLIR cameras," 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom, Kyoto, Japan, 2019, pp. 1-9. doi: 10.1109/PERCOM.2019.8767423

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/PERCOM.2019.8767423
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202003249098
Tiivistelmä

Abstract

Wearable thermal imaging is emerging as a powerful and increasingly affordable sensing technology. Current thermal imaging solutions are mostly based on uncooled forward looking infrared (FLIR), which is susceptible to errors resulting from warming of the camera and the device casing it. To mitigate these errors, a blackbody calibration technique where a shutter whose thermal parameters are known is periodically used to calibrate the measurements. This technique, however, is only accurate when the shutter’s temperature remains constant over time, which rarely is the case. In this paper, we contribute by developing a novel deep learning based calibration technique that uses battery temperature measurements to learn a model that allows adapting to changes in the internal thermal calibration parameters. Our method is particularly effective in continuous sensing where the device casing the camera is prone to heating. We demonstrate the effectiveness of our technique through controlled benchmark experiments which show significant improvements in thermal monitoring accuracy and robustness.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen