Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust visual tracking via collaborative and reinforced convolutional feature learning

Li, Dongdong; Kuai, Yangliu; Wen, Gongjian; Liu, Li (2020-04-09)

 
Avaa tiedosto
nbnfi-fe2020110989739.pdf (319.3Kt)
nbnfi-fe2020110989739_meta.xml (33.05Kt)
nbnfi-fe2020110989739_solr.xml (36.38Kt)
Lataukset: 

URL:
https://doi.org/10.1109/CVPRW.2019.00085

Li, Dongdong
Kuai, Yangliu
Wen, Gongjian
Liu, Li
Institute of Electrical and Electronics Engineers
09.04.2020

D. Li, Y. Kuai, G. Wen and L. Liu, "Robust Visual Tracking via Collaborative and Reinforced Convolutional Feature Learning," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 2019, pp. 592-600, doi: 10.1109/CVPRW.2019.00085

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/CVPRW.2019.00085
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020110989739
Tiivistelmä

Abstract

Convolutional neural networks are potent models that yield hierarchies of features and have drawn increasing interest in the visual tracking field. In the paper, we design an end-to-end trainable tracking framework based on Siamese network, which proposes to learn the low-level fine-grained and high-level semantic representations simultaneously with the aim of mutual benefit. Due to the distinct and complementary characteristics of the feature hierarchies, different tracking mechanisms are adopted for different feature layers. The low-level features are exploited and updated with a correlation filter layer for adaptive tracking and the high-level features are compared through cross-correlation directly for robust tracking. The two-level features are jointly trained with a multi-task loss function end-to-end. The proposed tracker takes full advantage of the adaptability of the low-level features and the generalization ability of the high-level features. Extensive experimental tracking results on the widely used OTB and TC128 benchmarks demonstrate the superiority of our tracker. Meanwhile, our proposed tracker can achieve a real-time tracking speed.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen