Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Revealing the invisible with model and data shrinking for composite-database micro-expression recognition

Xia, Zhaoqiang; Peng, Wei; Khor, Huai-Qian; Feng, Xiaoyi; Zhao, Guoying (2020-08-26)

 
Avaa tiedosto
nbnfi-fe2020111089762.pdf (971.9Kt)
nbnfi-fe2020111089762_meta.xml (40.30Kt)
nbnfi-fe2020111089762_solr.xml (41.18Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TIP.2020.3018222

Xia, Zhaoqiang
Peng, Wei
Khor, Huai-Qian
Feng, Xiaoyi
Zhao, Guoying
Institute of Electrical and Electronics Engineers
26.08.2020

Z. Xia, W. Peng, H. -Q. Khor, X. Feng and G. Zhao, "Revealing the Invisible With Model and Data Shrinking for Composite-Database Micro-Expression Recognition," in IEEE Transactions on Image Processing, vol. 29, pp. 8590-8605, 2020, doi: 10.1109/TIP.2020.3018222

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TIP.2020.3018222
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020111089762
Tiivistelmä

Abstract

Composite-database micro-expression recognition is attracting increasing attention as it is more practical for real-world applications. Though the composite database provides more sample diversity for learning good representation models, the important subtle dynamics are prone to disappearing in the domain shift such that the models greatly degrade their performance, especially for deep models. In this article, we analyze the influence of learning complexity, including input complexity and model complexity, and discover that the lower-resolution input data and shallower-architecture model are helpful to ease the degradation of deep models in composite-database task. Based on this, we propose a recurrent convolutional network (RCN) to explore the shallower-architecture and lower-resolution input data, shrinking model and input complexities simultaneously. Furthermore, we develop three parameter-free modules (i.e., wide expansion, shortcut connection and attention unit) to integrate with RCN without increasing any learnable parameters. These three modules can enhance the representation ability in various perspectives while preserving not-very-deep architecture for lower-resolution data. Besides, three modules can further be combined by an automatic strategy (a neural architecture search strategy) and the searched architecture becomes more robust. Extensive experiments on the MEGC2019 dataset (composited of existing SMIC, CASME II and SAMM datasets) have verified the influence of learning complexity and shown that RCNs with three modules and the searched combination outperform the state-of-the-art approaches.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen