Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Demo abstract : identification of LPWAN technologies using convolutional neural networks

Shahid, Adnan; Fontaine, Jaron; Haxhibeqiri, Jetmir; Saelens, Martijn; Khan, Zaheer; Moerman, Ingrid; De Poorter, Eli (2019-09-23)

 
Avaa tiedosto
nbnfi-fe2020043023549.pdf (5.249Mt)
nbnfi-fe2020043023549_meta.xml (40.69Kt)
nbnfi-fe2020043023549_solr.xml (28.23Kt)
Lataukset: 

URL:
https://doi.org/10.1109/INFCOMW.2019.8845259

Shahid, Adnan
Fontaine, Jaron
Haxhibeqiri, Jetmir
Saelens, Martijn
Khan, Zaheer
Moerman, Ingrid
De Poorter, Eli
Institute of Electrical and Electronics Engineers
23.09.2019

A. Shahid et al., "Demo Abstract: Identification of LPWAN Technologies using Convolutional Neural Networks," IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 2019, pp. 991-992, https://doi.org/10.1109/INFCOMW.2019.8845259

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/INFCOMW.2019.8845259
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020043023549
Tiivistelmä

Abstract

This paper demonstrates a Convolutional Neural Network (CNN) based mechanism for identification of low power wide area network (LPWAN) technologies such as LoRA, Sigfox, and IEEE 802.15.4g. Since the technologies operate in unlicensed bands and can interfere with each other, it becomes essential to identify technologies (or interference in general) so that the impact of interference can be minimized by better managing the spectrum. Contrary to the traditional rule-based identification mechanisms, we use Convolutional Neural Networks (CNNs) for identification, which do not require any domain expertise. We demonstrate two types of CNN based classifiers: (i) CNN based on raw IQ samples, and (ii) CNN based on Fast Fourier Transform (FFT), which give classification accuracies close to 95% and 98%, respectively. In addition, an online video is created for demonstrating the process [1].

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen