Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Signal reconstruction of compressed sensing based on alternating direction method of multipliers

Zhang, Yanliang; Li, Xingwang; Zhao, Guoying; Lu, Bing; Cavalcante, Charles C. (2019-06-15)

 
Avaa tiedosto
nbnfi-fe2019120445635.pdf (181.5Kt)
nbnfi-fe2019120445635_meta.xml (34.50Kt)
nbnfi-fe2019120445635_solr.xml (32.57Kt)
Lataukset: 

URL:
https://doi.org/10.1007/s00034-019-01174-2

Zhang, Yanliang
Li, Xingwang
Zhao, Guoying
Lu, Bing
Cavalcante, Charles C.
Springer Nature
15.06.2019

Zhang, Y., Li, X., Zhao, G. et al. Signal Reconstruction of Compressed Sensing Based on Alternating Direction Method of Multipliers. Circuits Syst Signal Process 39, 307–323 (2020). https://doi.org/10.1007/s00034-019-01174-2

https://rightsstatements.org/vocab/InC/1.0/
© Springer Science+Business Media, LLC, part of Springer Nature 2019. This is a post-peer-review, pre-copyedit version of an article published in Circuits, Systems, and Signal Processing. The final authenticated version is available online at: https://doi.org/10.1007/s00034-019-01174-2.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/s00034-019-01174-2
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019120445635
Tiivistelmä

Abstract

The sparse signal reconstruction of compressive sensing can be accomplished by \(l_1\)-norm minimization, but in many existing algorithms, there are the problems of low success probability and high computational complexity. To overcome these problems, an algorithm based on the alternating direction method of multipliers is proposed. First, using variable splitting techniques, an additional variable is introduced, which is tied to the original variable via an affine constraint. Then, the problem is transformed into a non-constrained optimization problem by means of the augmented Lagrangian multiplier method, where the multipliers can be obtained using the gradient ascent method according to dual optimization theory. The \(l_1\)-norm minimization can finally be solved by cyclic iteration with concise form, where the solution of the original variable could be obtained by a projection operator, and the auxiliary variable could be solved by a soft threshold operator. Simulation results show that a higher signal reconstruction success probability is obtained when compared to existing methods, while a low computational cost is required.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen