PHD1 controls muscle mTORC1 in a hydroxylation-independent manner by stabilizing leucyl tRNA synthetase
D’Hulst, Gommaar; Soro-Arnaiz, Inés; Masschelein, Evi; Veys, Koen; Fitzgerald, Gillian; Smeuninx, Benoit; Kim, Sunghoon; Deldicque, Louise; Blaauw, Bert; Carmeliet, Peter; Breen, Leigh; Koivunen, Peppi; Zhao, Shi-Min; De Bock, Katrien (2020-01-10)
D’Hulst, G., Soro-Arnaiz, I., Masschelein, E. et al. PHD1 controls muscle mTORC1 in a hydroxylation-independent manner by stabilizing leucyl tRNA synthetase. Nat Commun 11, 174 (2020). https://doi.org/10.1038/s41467-019-13889-6
© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
https://urn.fi/URN:NBN:fi-fe2020051126001
Tiivistelmä
Abstract
mTORC1 is an important regulator of muscle mass but how it is modulated by oxygen and nutrients is not completely understood. We show that loss of the prolyl hydroxylase domain isoform 1 oxygen sensor in mice (PHD1KO) reduces muscle mass. PHD1KO muscles show impaired mTORC1 activation in response to leucine whereas mTORC1 activation by growth factors or eccentric contractions was preserved. The ability of PHD1 to promote mTORC1 activity is independent of its hydroxylation activity but is caused by decreased protein content of the leucyl tRNA synthetase (LRS) leucine sensor. Mechanistically, PHD1 interacts with and stabilizes LRS. This interaction is promoted during oxygen and amino acid depletion and protects LRS from degradation. Finally, elderly subjects have lower PHD1 levels and LRS activity in muscle from aged versus young human subjects. In conclusion, PHD1 ensures an optimal mTORC1 response to leucine after episodes of metabolic scarcity.
Kokoelmat
- Avoin saatavuus [34150]