Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genetic algorithm‐based variable selection in prediction of hot metal desulfurization kinetics

Vuolio, Tero; Visuri, Ville-Valtteri; Sorsa, Aki; Paananen, Timo; Fabritius, Timo (2019-05-06)

 
Avaa tiedosto
nbnfi-fe2019112644291.pdf (798.3Kt)
nbnfi-fe2019112644291_meta.xml (36.39Kt)
nbnfi-fe2019112644291_solr.xml (34.57Kt)
Lataukset: 

URL:
https://doi.org/10.1002/srin.201900090

Vuolio, Tero
Visuri, Ville-Valtteri
Sorsa, Aki
Paananen, Timo
Fabritius, Timo
John Wiley & Sons
06.05.2019

Vuolio, T., Visuri, V., Sorsa, A., Paananen, T. and Fabritius, T. (2019), Genetic Algorithm‐Based Variable Selection in Prediction of Hot Metal Desulfurization Kinetics. Steel Research Int., 90: 1900090. doi:10.1002/srin.201900090

https://rightsstatements.org/vocab/InC/1.0/
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the peer reviewed version of the following article: Vuolio, T. , Visuri, V. , Sorsa, A. , Paananen, T. and Fabritius, T. (2019), Genetic Algorithm‐Based Variable Selection in Prediction of Hot Metal Desulfurization Kinetics. steel research int., 90: 1900090, which has been published in final form at https://doi.org/10.1002/srin.201900090. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1002/srin.201900090
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019112644291
Tiivistelmä

Abstract

Sulfur is considered as one of the main impurities in hot metal and hot metal desulfurization is often carried out using injection of fine‐grade desulfurization reagent. The selection of variables used for predicting the course of hot metal desulphurization requires expert knowledge. However, it is difficult to model the complex interactions in the process and to evaluate a high number of possible variable subsets with manual variable selection techniques. As the amount of data gathered from the process increases, manual variable selection becomes too time‐consuming and might lead to a suboptimal prediction model. The objective of this work is to execute an automatic variable selection procedure for prediction of hot metal desulfurization based on an industrial scale data set. The variable selection problem is formulated as a constrained optimization problem, in which the objective function is formulated based on repeated leave‐multiple‐out cross‐validation. The implemented solution strategy is a binary‐coded genetic algorithm (GA). By making use of the developed model, the effect of the main production variables on the rate and efficiency of primary hot metal desulfurization is quantified. The variables related to properties of the reagent and the injection parameters were found to be of great importance.

Kokoelmat
  • Avoin saatavuus [38599]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen