Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data
Tiulpin, Aleksei; Klein, Stefan; Bierma-Zeinstra, Sita M. A.; Thevenot, Jérôme; Rahtu, Esa; van Meurs, Joyce; Oei, Edwin H. G.; Saarakkala, Simo (2019-12-27)
Tiulpin, A., Klein, S., Bierma-Zeinstra, S.M.A. et al. Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data. Sci Rep 9, 20038 (2019). https://doi.org/10.1038/s41598-019-56527-3
© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
https://urn.fi/URN:NBN:fi-fe202003057323
Tiivistelmä
Abstract
Knee osteoarthritis (OA) is the most common musculoskeletal disease without a cure, and current treatment options are limited to symptomatic relief. Prediction of OA progression is a very challenging and timely issue, and it could, if resolved, accelerate the disease modifying drug development and ultimately help to prevent millions of total joint replacement surgeries performed annually. Here, we present a multi-modal machine learning-based OA progression prediction model that utilises raw radiographic data, clinical examination results and previous medical history of the patient. We validated this approach on an independent test set of 3,918 knee images from 2,129 subjects. Our method yielded area under the ROC curve (AUC) of 0.79 (0.78–0.81) and Average Precision (AP) of 0.68 (0.66–0.70). In contrast, a reference approach, based on logistic regression, yielded AUC of 0.75 (0.74–0.77) and AP of 0.62 (0.60–0.64). The proposed method could significantly improve the subject selection process for OA drug-development trials and help the development of personalised therapeutic plans.
Kokoelmat
- Avoin saatavuus [37337]