The effect of mechanical behavior on bendability of ultrahigh-strength steel
Arola, Anna-Maija; Kaijalainen, Antti; Kesti, Vili; Troive, Lars; Larkiola, Jari; Porter, David (2020-12-03)
Anna-Maija Arola, Antti Kaijalainen, Vili Kesti, Lars Troive, Jari Larkiola, David Porter, The effect of mechanical behavior on bendability of ultrahigh-strength steel, Materials Today Communications, Volume 26, 2021, 101943, ISSN 2352-4928, https://doi.org/10.1016/j.mtcomm.2020.101943
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
https://urn.fi/URN:NBN:fi-fe20201222102531
Tiivistelmä
Abstract
Bendability is an important property of ultrahigh-strength steels since the typical applications of such materials include structures manufactured by air-bending. Conventional methods to evaluate bendability, such as the bending test according to the standard VDA-238 or the conventional tensile test do not provide sufficient information to evaluate bendability of ultrahigh-strength steels due to the average nature of the material response in these tests. In this study, the mechanical properties were determined using thin tensile specimens cut from the surface of the sheet and the evaluation of bendability was carried out using frictionless bending tests. The results of the experiments and FE-modelling presented in this paper reveal that the mechanical properties of the sheet surface have a significant impact on bendability. Novel ultrahigh-strength steel with better work-hardening capacity at the surface caused by a layer of relatively soft ferrite and lower bainite has good bendability, especially when the bend line is aligned transverse to the rolling direction. Microstructural investigations reveal that in a conventional steel with a relatively hard surface microstructure, the deformation localizes into shear bands that eventually lead to fracture, but similar shear banding was not present in the novel steel surface. This can be attributed to the better work-hardening capacity which delays the onset of shear localization and fracture.
Kokoelmat
- Avoin saatavuus [34183]