Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel method for automatic localization of joint area on knee plain radiographs

Tiulpin, Aleksei; Thevenot, Jerome; Rahtu, Esa; Saarakkala, Simo (2017-05-19)

 
Avaa tiedosto
nbnfi-fe201902205800.pdf (3.188Mt)
nbnfi-fe201902205800_meta.xml (35.26Kt)
nbnfi-fe201902205800_solr.xml (34.47Kt)
Lataukset: 

URL:
https://doi.org/10.1007/978-3-319-59129-2_25

Tiulpin, Aleksei
Thevenot, Jerome
Rahtu, Esa
Saarakkala, Simo
Springer Nature
19.05.2017

Tiulpin A., Thevenot J., Rahtu E., Saarakkala S. (2017) A Novel Method for Automatic Localization of Joint Area on Knee Plain Radiographs. In: Sharma P., Bianchi F. (eds) Image Analysis. SCIA 2017. Lecture Notes in Computer Science, vol 10270. Springer, Cham

https://rightsstatements.org/vocab/InC/1.0/
© Springer International Publishing AG 2017. This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer Science, vol 10270. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-59129-2_25.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/978-3-319-59129-2_25
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902205800
Tiivistelmä

Abstract

Osteoarthritis (OA) is a common musculoskeletal condition typically diagnosed from radiographic assessment after clinical examination. However, a visual evaluation made by a practitioner suffers from subjectivity and is highly dependent on the experience. Computer-aided diagnostics (CAD) could improve the objectivity of knee radiographic examination. The first essential step of knee OA CAD is to automatically localize the joint area. However, according to the literature this task itself remains challenging. The aim of this study was to develop novel and computationally efficient method to tackle the issue. Here, three different datasets of knee radiographs were used (n = 473/93/77) to validate the overall performance of the method. Our pipeline consists of two parts: anatomically-based joint area proposal and their evaluation using Histogram of Oriented Gradients and the pre-trained Support Vector Machine classifier scores. The obtained results for the used datasets show the mean intersection over the union equals to: 0.84, 0.79 and 0.78. Using a high-end computer, the method allows to automatically annotate conventional knee radiographs within 14–16 ms and high resolution ones within 170 ms. Our results demonstrate that the developed method is suitable for large-scale analyses.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen