Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalized face anti-spoofing by detecting pulse from face videos

Li, Xiaobai; Komulainen, Jukka; Zhao, Guoying; Yuen, Pong-Chi; Pietikäinen, Matti (2016-12-04)

 
Avaa tiedosto
nbnfi-fe201902256226.pdf (2.320Mt)
nbnfi-fe201902256226_meta.xml (35.79Kt)
nbnfi-fe201902256226_solr.xml (33.12Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICPR.2016.7900300

Li, Xiaobai
Komulainen, Jukka
Zhao, Guoying
Yuen, Pong-Chi
Pietikäinen, Matti
Institute of Electrical and Electronics Engineers
04.12.2016

Xiaobai Li, J. Komulainen, G. Zhao, Pong-Chi Yuen and M. Pietikäinen, "Generalized face anti-spoofing by detecting pulse from face videos," 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, 2016, pp. 4244-4249. doi: 10.1109/ICPR.2016.7900300

https://rightsstatements.org/vocab/InC/1.0/
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICPR.2016.7900300
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902256226
Tiivistelmä

Abstract

Face biometric systems are vulnerable to spoofing attacks. Such attacks can be performed in many ways, including presenting a falsified image, video or 3D mask of a valid user. A widely used approach for differentiating genuine faces from fake ones has been to capture their inherent differences in (2D or 3D) texture using local descriptors. One limitation of these methods is that they may fail if an unseen attack type, e.g. a highly realistic 3D mask which resembles real skin texture, is used in spoofing. Here we propose a robust anti-spoofing method by detecting pulse from face videos. Based on the fact that a pulse signal exists in a real living face but not in any mask or print material, the method could be a generalized solution for face liveness detection. The proposed method is evaluated first on a 3D mask spoofing database 3DMAD to demonstrate its effectiveness in detecting 3D mask attacks. More importantly, our cross-database experiment with high quality REAL-F masks shows that the pulse based method is able to detect even the previously unseen mask type whereas texture based methods fail to generalize beyond the development data. Finally, we propose a robust cascade system combining two complementary attack-specific spoof detectors, i.e. utilize pulse detection against print attacks and color texture analysis against video attacks.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen