Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Surface defect classification for hot-rolled steel strips by selectively dominant local binary patterns

Luo, Qiwu; Fang, Xiaoxin; Sun, Yichuang; Liu, Li; Ai, Jiaqiu; Yang, Chunhua; Simpson, Oluyomi (2019-02-11)

 
Avaa tiedosto
nbnfi-fe2019101032121.pdf (9.423Mt)
nbnfi-fe2019101032121_meta.xml (37.28Kt)
nbnfi-fe2019101032121_solr.xml (36.80Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ACCESS.2019.2898215

Luo, Qiwu
Fang, Xiaoxin
Sun, Yichuang
Liu, Li
Ai, Jiaqiu
Yang, Chunhua
Simpson, Oluyomi
Institute of Electrical and Electronics Engineers
11.02.2019

Q. Luo et al., "Surface Defect Classification for Hot-Rolled Steel Strips by Selectively Dominant Local Binary Patterns," in IEEE Access, vol. 7, pp. 23488-23499, 2019. doi: 10.1109/ACCESS.2019.2898215

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Translations and content mining are permitted for academic research only.Personal use is also permitted, but republication/redistribution requires IEEE permission.See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. Published in this repository with the kind permission of the publisher.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ACCESS.2019.2898215
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019101032121
Tiivistelmä

Abstract

Developments in defect descriptors and computer vision-based algorithms for automatic optical inspection (AOI) allows for further development in image-based measurements. Defect classification is a vital part of an optical-imaging-based surface quality measuring instrument. The high-speed production rhythm of hot continuous rolling requires an ultra-rapid response to every component as well as algorithms in AOI instrument. In this paper, a simple, fast, yet robust texture descriptor, namely selectively dominant local binary patterns (SDLBPs), is proposed for defect classification. First, an intelligent searching algorithm with a quantitative thresholding mechanism is built to excavate the dominant non-uniform patterns (DNUPs). Second, two convertible schemes of pattern code mapping are developed for binary encoding of all uniform patterns and DNUPs. Third, feature extraction is carried out under SDLBP framework. Finally, an adaptive region weighting method is built for further strengthening the original nearest neighbor classifier in the feature matching stage. The extensive experiments carried out on an open texture database (Outex) and an actual surface defect database (Dragon) indicates that our proposed SDLBP yields promising performance on both classification accuracy and time efficiency.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen