Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D face morphable models “in-the-wild”

Booth, James; Antonakos, Epameinondas; Ploumpis, Stylianos; Trigeorgis, George; Panagakis, Yannis; Zafeiriou, Stefanos (2017-11-09)

 
Avaa tiedosto
nbnfi-fe2019100330979.pdf (2.720Mt)
nbnfi-fe2019100330979_meta.xml (35.07Kt)
nbnfi-fe2019100330979_solr.xml (36.47Kt)
Lataukset: 

URL:
https://doi.org/10.1109/CVPR.2017.580

Booth, James
Antonakos, Epameinondas
Ploumpis, Stylianos
Trigeorgis, George
Panagakis, Yannis
Zafeiriou, Stefanos
Institute of Electrical and Electronics Engineers
09.11.2017

J. Booth, E. Antonakos, S. Ploumpis, G. Trigeorgis, Y. Panagakis and S. Zafeiriou, "3D Face Morphable Models "In-the-Wild"," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 5464-5473. doi: 10.1109/CVPR.2017.580

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/CVPR.2017.580
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019100330979
Tiivistelmä

Abstract

3D Morphable Models (3DMMs) are powerful statistical models of 3D facial shape and texture, and among the state-of-the-art methods for reconstructing facial shape from single images. With the advent of new 3D sensors, many 3D facial datasets have been collected containing both neutral as well as expressive faces. However, all datasets are captured under controlled conditions. Thus, even though powerful 3D facial shape models can be learnt from such data, it is difficult to build statistical texture models that are sufficient to reconstruct faces captured in unconstrained conditions (in-the-wild). In this paper, we propose the first, to the best of our knowledge, in-the-wild 3DMM by combining a powerful statistical model of facial shape, which describes both identity and expression, with an in-the-wild texture model. We show that the employment of such an in-the-wild texture model greatly simplifies the fitting procedure, because there is no need to optimise with regards to the illumination parameters. Furthermore, we propose a new fast algorithm for fitting the 3DMM in arbitrary images. Finally, we have captured the first 3D facial database with relatively unconstrained conditions and report quantitative evaluations with state-of-the-art performance. Complementary qualitative reconstruction results are demonstrated on standard in-the-wild facial databases.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen