Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inferring demographic data of marginalized users in Twitter with computer vision APIs

Kostakos, Panos; Pandya, Abhinay; Kyriakouli, Olga; Oussalah, Mourad (2019-07-04)

 
Avaa tiedosto
nbnfi-fe2019082024775.pdf (512.2Kt)
nbnfi-fe2019082024775_meta.xml (33.31Kt)
nbnfi-fe2019082024775_solr.xml (32.48Kt)
Lataukset: 

URL:
https://doi.org/10.1109/EISIC.2018.00022

Kostakos, Panos
Pandya, Abhinay
Kyriakouli, Olga
Oussalah, Mourad
Institute of Electrical and Electronics Engineers
04.07.2019

P. Kostakos, A. Pandya, O. Kyriakouli and M. Oussalah, "Inferring Demographic Data of Marginalized Users in Twitter with Computer Vision APIs," 2018 European Intelligence and Security Informatics Conference (EISIC), Karlskrona, Sweden, 2018, pp. 81-84. doi: 10.1109/EISIC.2018.00022

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/EISIC.2018.00022
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019082024775
Tiivistelmä

Abstract

Inferring demographic intelligence from unlabeled social media data is an actively growing area of research, challenged by low availability of ground truth annotated training corpora. High-accuracy approaches for labeling demographic traits of social media users employ various heuristics that do not scale up and often discount non-English texts and marginalized users. First, we present a framework for inferring the demographic attributes of Twitter users from their profile pictures (avatars) using the Microsoft Azure Face API. Second, we measure the inter-rater agreement between annotations made using our framework against two pre-labeled samples of Twitter users (N1=1163; N2=659) whose age labels were manually annotated. Our results indicate that the strength of the inter-rater agreement (Gwet’s AC1=0.89; 0.90) between the gold standard and our approach is ‘very good’ for labelling the age group of users. The paper provides a use case of Computer Vision for enabling the development of large cross-sectional labeled datasets, and further advances novel solutions in the field of demographic inference from short social media texts.

Kokoelmat
  • Avoin saatavuus [38821]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen