Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting interruptibility for manual data collection : a cluster-based user model

Visuri, Aku; Ferreira, Denzil; van Berkel, Niels; Luo, Chu; Goncalves, Jorge; Kostakos, Vassilis (2017-09-04)

 
Avaa tiedosto
nbnfi-fe201902195404.pdf (800.8Kt)
nbnfi-fe201902195404_meta.xml (36.66Kt)
nbnfi-fe201902195404_solr.xml (31.96Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3098279.3098532

Visuri, Aku
Ferreira, Denzil
van Berkel, Niels
Luo, Chu
Goncalves, Jorge
Kostakos, Vassilis
Association for Computing Machinery
04.09.2017

Aku Visuri, Niels van Berkel, Chu Luo, Jorge Goncalves, Denzil Ferreira, and Vassilis Kostakos. 2017. Predicting interruptibility for manual data collection: a cluster-based user model. In Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI '17). ACM, New York, NY, USA, Article 12, 14 pages. DOI: https://doi.org/10.1145/3098279.3098532

https://rightsstatements.org/vocab/InC/1.0/
© 2017 Copyright is held by the owner/author(s). | ACM 2017. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in MobileHCI '17. Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services. Vienna, Austria Sept. 4-, 2017, http://dx.doi.org/10.1145/3098279.3098532.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3098279.3098532
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902195404
Tiivistelmä

Abstract

Previous work suggests that Quantified-Self applications can retain long-term usage with motivational methods. These methods often require intermittent attention requests with manual data input. This may cause unnecessary burden to the user, leading to annoyance, frustration and possible application abandonment. We designed a novel method that uses on-screen alert dialogs to transform recurrent smartphone usage sessions into moments of data contributions and evaluate how accurately machine learning can reduce unintended interruptions. We collected sensor data from 48 participants during a 4-week long deployment and analysed how personal device usage can be considered in scheduling data inputs. We show that up to 81.7% of user interactions with the alert dialogs can be accurately predicted using user clusters, and up to 75.5% of unintended interruptions can be prevented and rescheduled. Our approach can be leveraged by applications that require self-reports on a frequent basis and may provide a better longitudinal QS experience.

Kokoelmat
  • Avoin saatavuus [38358]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen