Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Image denoising via group sparsity residual constraint

Zha, Zhiyuan; Liu, Xin; Zhou, Ziheng; Huang, Xiaohua; Shi, Jingang; Shang, Zhenhong; Tang, Lan; Bai, Yechao; Wang, Qiong; Zhang, Xinggan (2017-03-05)

 
Avaa tiedosto
nbnfi-fe201902226050.pdf (606.5Kt)
nbnfi-fe201902226050_meta.xml (43.79Kt)
nbnfi-fe201902226050_solr.xml (36.12Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICASSP.2017.7952464

Zha, Zhiyuan
Liu, Xin
Zhou, Ziheng
Huang, Xiaohua
Shi, Jingang
Shang, Zhenhong
Tang, Lan
Bai, Yechao
Wang, Qiong
Zhang, Xinggan
Institute of Electrical and Electronics Engineers
05.03.2017

Z. Zha et al., "Image denoising via group sparsity residual constraint," 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 2017, pp. 1787-1791. doi: 10.1109/ICASSP.2017.7952464

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICASSP.2017.7952464
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902226050
Tiivistelmä

Abstract

Group sparsity has shown great potential in various low-level vision tasks (e.g, image denoising, deblurring and inpainting). In this paper, we propose a new prior model for image denoising via group sparsity residual constraint (GSRC). To enhance the performance of group sparse-based image denoising, the concept of group sparsity residual is proposed, and thus, the problem of image denoising is translated into one that reduces the group sparsity residual. To reduce the residual, we first obtain some good estimation of the group sparse coefficients of the original image by the first-pass estimation of noisy image, and then centralize the group sparse coefficients of noisy image to the estimation. Experimental results have demonstrated that the proposed method not only outperforms many state-of-the-art denoising methods such as BM3D and WNNM, but results in a faster speed.

Kokoelmat
  • Avoin saatavuus [38821]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen