Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep canonical time warping

Trigeorgis, George; Nicolaou, Mihalis A.; Zafeiriou, Stefanos; Schuller, Bjorn W. (2016-06-27)

 
Avaa tiedosto
nbnfi-fe201902276407.pdf (3.759Mt)
nbnfi-fe201902276407_meta.xml (30.74Kt)
nbnfi-fe201902276407_solr.xml (31.45Kt)
Lataukset: 

URL:
https://doi.org/10.1109/CVPR.2016.552

Trigeorgis, George
Nicolaou, Mihalis A.
Zafeiriou, Stefanos
Schuller, Bjorn W.
Institute of Electrical and Electronics Engineers
27.06.2016

G. Trigeorgis, M. A. Nicolaou, S. Zafeiriou and B. W. Schuller, "Deep Canonical Time Warping," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 5110-5118. doi: 10.1109/CVPR.2016.552

https://rightsstatements.org/vocab/InC/1.0/
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/CVPR.2016.552
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902276407
Tiivistelmä

Abstract

Machine learning algorithms for the analysis of timeseries often depend on the assumption that the utilised data are temporally aligned. Any temporal discrepancies arising in the data is certain to lead to ill-generalisable models, which in turn fail to correctly capture the properties of the task at hand. The temporal alignment of time-series is thus a crucial challenge manifesting in a multitude of applications. Nevertheless, the vast majority of algorithms oriented towards the temporal alignment of time-series are applied directly on the observation space, or utilise simple linear projections. Thus, they fail to capture complex, hierarchical non-linear representations which may prove to be beneficial towards the task of temporal alignment, particularly when dealing with multi-modal data (e.g., aligning visual and acoustic information). To this end, we present the Deep Canonical Time Warping (DCTW), a method which automatically learns complex non-linear representations of multiple time-series, generated such that (i) they are highly correlated, and (ii) temporally in alignment. By means of experiments on four real datasets, we show that the representations learnt via the proposed DCTW significantly outperform state-of-the-art methods in temporal alignment, elegantly handling scenarios with highly heterogeneous features, such as the temporal alignment of acoustic and visual features.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen