Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mnemonic Descent Method : a recurrent process applied for end-to-end face alignment

Trigeorgis, George; Snape, Patrick; Nicolaou, Mihalis A.; Antonakos, Epameinondas; Zafeiriou, Stefanos (2016-06-27)

 
Avaa tiedosto
nbnfi-fe201902286523.pdf (5.409Mt)
nbnfi-fe201902286523_meta.xml (33.49Kt)
nbnfi-fe201902286523_solr.xml (34.20Kt)
Lataukset: 

URL:
https://doi.org/10.1109/CVPR.2016.453

Trigeorgis, George
Snape, Patrick
Nicolaou, Mihalis A.
Antonakos, Epameinondas
Zafeiriou, Stefanos
Institute of Electrical and Electronics Engineers
27.06.2016

G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos and S. Zafeiriou, "Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 4177-4187. doi: 10.1109/CVPR.2016.453

https://rightsstatements.org/vocab/InC/1.0/
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/CVPR.2016.453
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902286523
Tiivistelmä

Abstract

Cascaded regression has recently become the method of choice for solving non-linear least squares problems such as deformable image alignment. Given a sizeable training set, cascaded regression learns a set of generic rules that are sequentially applied to minimise the least squares problem. Despite the success of cascaded regression for problems such as face alignment and head pose estimation, there are several shortcomings arising in the strategies proposed thus far. Specifically, (a) the regressors are learnt independently, (b) the descent directions may cancel one another out and (c) handcrafted features (e.g., HoGs, SIFT etc.) are mainly used to drive the cascade, which may be sub-optimal for the task at hand. In this paper, we propose a combined and jointly trained convolutional recurrent neural network architecture that allows the training of an end-to-end to system that attempts to alleviate the aforementioned drawbacks. The recurrent module facilitates the joint optimisation of the regressors by assuming the cascades form a nonlinear dynamical system, in effect fully utilising the information between all cascade levels by introducing a memory unit that shares information across all levels. The convolutional module allows the network to extract features that are specialised for the task at hand and are experimentally shown to outperform hand-crafted features. We show that the application of the proposed architecture for the problem of face alignment results in a strong improvement over the current state-of-the-art.

Kokoelmat
  • Avoin saatavuus [37887]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen