Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recognition of affect in the wild using deep neural networks

Kollias, Dimitrios; Nicolaou, Mihalis A.; Kotsia, Irene; Zhao, Guoying; Zafeiriou, Stefanos (2017-07-21)

 
Avaa tiedosto
nbnfi-fe201902276439.pdf (1.043Mt)
nbnfi-fe201902276439_meta.xml (33.78Kt)
nbnfi-fe201902276439_solr.xml (35.80Kt)
Lataukset: 

URL:
https://doi.org/10.1109/CVPRW.2017.247

Kollias, Dimitrios
Nicolaou, Mihalis A.
Kotsia, Irene
Zhao, Guoying
Zafeiriou, Stefanos
Institute of Electrical and Electronics Engineers
21.07.2017

D. Kollias, M. A. Nicolaou, I. Kotsia, G. Zhao and S. Zafeiriou, "Recognition of Affect in the Wild Using Deep Neural Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, 2017, pp. 1972-1979. doi: 10.1109/CVPRW.2017.247

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/CVPRW.2017.247
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902276439
Tiivistelmä

Abstract

In this paper we utilize the first large-scale "in-the-wild" (Aff-Wild) database, which is annotated in terms of the valence-arousal dimensions, to train and test an end-to-end deep neural architecture for the estimation of continuous emotion dimensions based on visual cues. The proposed architecture is based on jointly training convolutional (CNN) and recurrent neural network (RNN) layers, thus exploiting both the invariant properties of convolutional features, while also modelling temporal dynamics that arise in human behaviour via the recurrent layers. Various pre-trained networks are used as starting structures which are subsequently appropriately fine-tuned to the Aff-Wild database. Obtained results show premise for the utilization of deep architectures for the visual analysis of human behaviour in terms of continuous emotion dimensions and analysis of different types of affect.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen