Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aff-wild : valence and arousal ‘in-the-wild’ challenge

Zafeiriou, Stefanos; Kollias, Dimitrios; Nicolaou, Mihalis A.; Papaioannou, Athanasios; Zhao, Guoying; Kotsia, Irene (2017-07-21)

 
Avaa tiedosto
nbnfi-fe201902276466.pdf (2.808Mt)
nbnfi-fe201902276466_meta.xml (36.13Kt)
nbnfi-fe201902276466_solr.xml (35.80Kt)
Lataukset: 

URL:
https://doi.org/10.1109/CVPRW.2017.248

Zafeiriou, Stefanos
Kollias, Dimitrios
Nicolaou, Mihalis A.
Papaioannou, Athanasios
Zhao, Guoying
Kotsia, Irene
Institute of Electrical and Electronics Engineers
21.07.2017

S. Zafeiriou, D. Kollias, M. A. Nicolaou, A. Papaioannou, G. Zhao and I. Kotsia, "Aff-Wild: Valence and Arousal ‘In-the-Wild’ Challenge," 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, 2017, pp. 1980-1987. doi: 10.1109/CVPRW.2017.248

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/CVPRW.2017.248
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902276466
Tiivistelmä

Abstract

The Affect-in-the-Wild (Aff-Wild) Challenge proposes a new comprehensive benchmark for assessing the performance of facial affect/behaviour analysis/understanding ‘in-the-wild’. The Aff-wild benchmark contains about 300 videos (over 2,000 minutes of data) annotated with regards to valence and arousal, all captured ‘in-the-wild’ (the main source being Youtube videos). The paper presents the database description, the experimental set up, the baseline method used for the Challenge and finally the summary of the performance of the different methods submitted to the Affect-in-the-Wild Challenge for Valence and Arousal estimation. The challenge demonstrates that meticulously designed deep neural networks can achieve very good performance when trained with in-the-wild data.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen