Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards early detection of depression through smartphone sensing

Opoku Asare, Kennedy; Visuri, Aku; Ferreira, Denzil S.T. (2019-09-09)

 
Avaa tiedosto
nbnfi-fe2019091628436.pdf (656.5Kt)
nbnfi-fe2019091628436_meta.xml (30.20Kt)
nbnfi-fe2019091628436_solr.xml (28.48Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3341162.3347075

Opoku Asare, Kennedy
Visuri, Aku
Ferreira, Denzil S.T.
Association for Computing Machinery
09.09.2019

Kennedy Opoku Asare, Aku Visuri, and Denzil S. T. Ferreira. 2019. Towards early detection of depression through smartphone sensing. In Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers (UbiComp/ISWC '19 Adjunct). ACM, New York, NY, USA, 1158-1161. DOI: https://doi.org/10.1145/3341162.3347075

https://rightsstatements.org/vocab/InC/1.0/
© 2019 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers (UbiComp/ISWC '19 Adjunct), https://doi.org/10.1145/3341162.3347075.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3341162.3347075
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019091628436
Tiivistelmä

Abstract

Major depressive disorder is a complex and common mental health disorder that is heterogeneous and varies between individuals. Predictive measures have previously been used to predict depression in individuals. Given the complexity, heterogeneity of major depressive disorder in individuals, and the scarcity of labelled objective depressive behavioural data, predictive measures have shown limited applicability in detecting the early onset of depression. We present a developed system that collects similar smartphone sensor data like in previous predictive analysis studies. We discuss that anomaly detection and entropy analysis methods are best suited for developing new metrics for the early detection of the onset and progression of major depressive disorder.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen