Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning a target sample re-generator for cross-database micro-expression recognition

Zong, Yuan; Huang, Xiaohua; Zheng, Wenming; Cui, Zhen; Zhao, Guoying (2017-10-23)

 
Avaa tiedosto
nbnfi-fe2019060719451.pdf (1.778Mt)
nbnfi-fe2019060719451_meta.xml (34.52Kt)
nbnfi-fe2019060719451_solr.xml (35.11Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3123266.3123367

Zong, Yuan
Huang, Xiaohua
Zheng, Wenming
Cui, Zhen
Zhao, Guoying
Association for Computing Machinery
23.10.2017

Yuan Zong, Xiaohua Huang, Wenming Zheng, Zhen Cui, and Guoying Zhao. 2017. Learning a Target Sample Re-Generator for Cross-Database Micro-Expression Recognition. In Proceedings of the 25th ACM international conference on Multimedia (MM '17). ACM, New York, NY, USA, 872-880. DOI: https://doi.org/10.1145/3123266.3123367

https://rightsstatements.org/vocab/InC/1.0/
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in MM '17 Proceedings of the 2017 ACM on Multimedia Conference : Mountain View, California, USA - October 23 - 27, 2017, https://doi.org/10.1145/3123266.3123367.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3123266.3123367
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019060719451
Tiivistelmä

Abstract

In this paper, we investigate the cross-database micro-expression recognition problem, where the training and testing samples are from two different micro-expression databases. Under this setting, the training and testing samples would have different feature distributions and hence the performance of most existing micro-expression recognition methods may decrease greatly. To solve this problem, we propose a simple yet effective method called Target Sample Re-Generator (TSRG) in this paper. By using TSRG, we are able to re-generate the samples from target micro-expression database and the re-generated target samples would share same or similar feature distributions with the original source samples. For this reason, we can then use the classifier learned based on the labeled source samples to accurately predict the micro-expression categories of the unlabeled target samples. To evaluate the performance of the proposed TSRG method, extensive cross-database micro-expression recognition experiments designed based on SMIC and CASME II databases are conducted. Compared with recent state-of-the-art cross-database emotion recognition methods, the proposed TSRG achieves more promising results.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen