Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating multilevel regional variation in excess mortality of cancer patients using integrated nested Laplace approximation

Seppä, Karri; Rue, Håvard; Hakulinen, Timo; Läärä, Esa; Sillanpää, Mikko J.; Pitkäniemi, Janne (2018-10-17)

 
Avaa tiedosto
nbnfi-fe2019052216654.pdf (452.0Kt)
nbnfi-fe2019052216654_meta.xml (38.16Kt)
nbnfi-fe2019052216654_solr.xml (40.49Kt)
Lataukset: 

URL:
https://doi.org/10.1002/sim.8010

Seppä, Karri
Rue, Håvard
Hakulinen, Timo
Läärä, Esa
Sillanpää, Mikko J.
Pitkäniemi, Janne
John Wiley & Sons
17.10.2018

Seppä, K, Rue, H, Hakulinen, T, Läärä, E, Sillanpää, MJ, Pitkäniemi, J. Estimating multilevel regional variation in excess mortality of cancer patients using integrated nested Laplace approximation. Statistics in Medicine. 2019; 38: 778– 791. https://doi.org/10.1002/sim.8010

https://rightsstatements.org/vocab/InC/1.0/
© 2018 John Wiley & Sons, Ltd. This is the peer reviewed version of the following article: Seppä, K, Rue, H, Hakulinen, T, Läärä, E, Sillanpää, MJ, Pitkäniemi, J. Estimating multilevel regional variation in excess mortality of cancer patients using integrated nested Laplace approximation. Statistics in Medicine. 2019; 38: 778– 791. https://doi.org/10.1002/sim.8010, which has been published in final form at https://doi.org/10.1002/sim.8010. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1002/sim.8010
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019052216654
Tiivistelmä

Abstract

Models of excess mortality with random effects were used to estimate regional variation in relative or net survival of cancer patients. Statistical inference for these models based on the Markov chain Monte Carlo (MCMC) methods is computationally intensive and, therefore, not feasible for routine analyses of cancer register data. This study assessed the performance of the integrated nested Laplace approximation (INLA) in monitoring regional variation in cancer survival. Poisson regression model of excess mortality including both spatially correlated and unstructured random effects was fitted to the data of patients diagnosed with ovarian and breast cancer in Finland during 1955–2014 with follow up from 1960 through 2014 by using the period approach with five‐year calendar time windows. We estimated standard deviations associated with variation (i) between hospital districts and (ii) between municipalities within hospital districts. Posterior estimates based on the INLA approach were compared to those based on the MCMC simulation. The estimates of the variation parameters were similar between the two approaches. Variation within hospital districts dominated in the total variation between municipalities. In 2000–2014, the proportion of the average variation within hospital districts was 68% (95% posterior interval: 35–93%) and 82% (60–98%) out of the total variation in ovarian and breast cancer, respectively. In the estimation of regional variation, the INLA approach was accurate, fast, and easy to implement by using the R‐INLA package.

Kokoelmat
  • Avoin saatavuus [38821]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen