Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

HEp-2 cell classification via combining multiresolution co-occurrence texture and large region shape information

Qi, Xianbiao; Zhao, Guoying; Li, Chun-Guang; Guo, Jun; Pietikäinen, Matti (2015-12-17)

 
Avaa tiedosto
nbnfi-fe2019040811355.pdf (1.491Mt)
nbnfi-fe2019040811355_meta.xml (36.75Kt)
nbnfi-fe2019040811355_solr.xml (39.47Kt)
Lataukset: 

URL:
https://doi.org/10.1109/JBHI.2015.2508938

Qi, Xianbiao
Zhao, Guoying
Li, Chun-Guang
Guo, Jun
Pietikäinen, Matti
Institute of Electrical and Electronics Engineers
17.12.2015

X. Qi, G. Zhao, C. Li, J. Guo and M. Pietikäinen, "HEp-2 Cell Classification via Combining Multiresolution Co-Occurrence Texture and Large Region Shape Information," in IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 2, pp. 429-440, March 2017. doi: 10.1109/JBHI.2015.2508938

https://rightsstatements.org/vocab/InC/1.0/
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/JBHI.2015.2508938
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019040811355
Tiivistelmä

Abstract

Indirect immunofluorescence imaging of human epithelial type 2 (HEp-2) cell image is an effective evidence to diagnose autoimmune diseases. Recently, computer-aided diagnosis of autoimmune diseases by the HEp-2 cell classification has attracted great attention. However, the HEp-2 cell classification task is quite challenging due to large intraclass and small interclass variations. In this paper, we propose an effective approach for the automatic HEp-2 cell classification by combining multiresolution co-occurrence texture and large regional shape information. To be more specific, we propose to: 1) capture multiresolution co-occurrence texture information by a novel pairwise rotation-invariant co-occurrence of local Gabor binary pattern descriptor; 2) depict large regional shape information by using an improved Fisher vector model with RootSIFT features, which are sampled from large image patches in multiple scales; and 3) combine both features. We evaluate systematically the proposed approach on the IEEE International Conference on Pattern Recognition (ICPR) 2012, the IEEE International Conference on Image Processing (ICIP) 2013, and the ICPR 2014 contest datasets. The proposed method based on the combination of the introduced two features outperforms the winners of the ICPR 2012 contest using the same experimental protocol. Our method also greatly improves the winner of the ICIP 2013 contest under four different experimental setups. Using the leave-one-specimen-out evaluation strategy, our method achieves comparable performance with the winner of the ICPR 2014 contest that combined four features.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen