Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Atrial fibrillation detection from face videos by fusing subtle variations

Shi, Jingang; Alikhani, Iman; Li, Xiaobai; Yu, Zitong; Seppänen, Tapio; Zhao, Guoying (2019-07-03)

 
Avaa tiedosto
nbnfi-fe2019121648360.pdf (3.097Mt)
nbnfi-fe2019121648360_meta.xml (40.44Kt)
nbnfi-fe2019121648360_solr.xml (40.70Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCSVT.2019.2926632

Shi, Jingang
Alikhani, Iman
Li, Xiaobai
Yu, Zitong
Seppänen, Tapio
Zhao, Guoying
Institute of Electrical and Electronics Engineers
03.07.2019

J. Shi, I. Alikhani, X. Li, Z. Yu, T. Seppänen and G. Zhao, "Atrial Fibrillation Detection From Face Videos by Fusing Subtle Variations," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 8, pp. 2781-2795, Aug. 2020, doi: 10.1109/TCSVT.2019.2926632

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCSVT.2019.2926632
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019121648360
Tiivistelmä

Abstract

Atrial fibrillation (AF) is one of the most common cardiac arrhythmias, which particularly occurs in the elderly individuals with heart disease. Though AF is often asymptomatic during normal activities, it has huge potential risks for stroke and other severe diseases. Thus, early detection of AF has great importance in the field of public health. Currently, electrocardiography (ECG) is the commonly used measure for the diagnosis of AF, which presents the irregular rhythm of waveform for AF patients. However, the measurement of the ECG signal requires special medical acquisition devices, which are not comfortable for practical monitoring in daily life. In this paper, we explore a very promising algorithm to detect AF from remote face videos by analyzing the color variations of face skin. The main challenge is that the current remote photoplethysmography (rPPG) technique is rather immature, which causes difficulty in extracting accurate pulse signals for describing the cardiac rhythm. To solve this problem, we first utilize various rPPG algorithms to capture pulse rhythms from different regions on the face video. We then investigate biomedical statistical methods to extract suitable features from each pulse signal. Due to the imprecision of video-extracted pulse signals, some traditional physiological features may lose their utility since they were originally proposed for ECG signals. Furthermore, some of them are very susceptible to the influence of noise. Thus, we propose a feature fusion algorithm to select and combine reasonable information from multiple physiological features, which aims to preserve the discriminability of detecting AF in the presence of the noise and outlier disturbances. The experimental results on a real-world database demonstrate the effectiveness of the proposed method in providing useful information for AF detection.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen