Self-assembled nanofibrils from RGD-functionalized cellulose nanocrystals to improve the performance of PEI/DNA polyplexes
Hujaya, Sry D.; Manninen, Aki; Kling, Kirsten; Wagner, Jakob B.; Vainio, Seppo J.; Liimatainen, Henrikki (2019-06-03)
Sry D. Hujaya, Aki Manninen, Kirsten Kling, Jakob B. Wagner, Seppo J. Vainio, Henrikki Liimatainen, Self-assembled nanofibrils from RGD-functionalized cellulose nanocrystals to improve the performance of PEI/DNA polyplexes, Journal of Colloid and Interface Science, Volume 553, 2019, Pages 71-82, ISSN 0021-9797, https://doi.org/10.1016/j.jcis.2019.06.001
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://urn.fi/URN:NBN:fi-fe2019103035926
Tiivistelmä
Abstract
Cellulose nanocrystals (CNCs) are promising bio-derived nanomaterials for the bottom-up fabrication of biomedical constructs. In this report, dicarboxylic acid-functionalized CNC (DCC) was functionalized with arginylglycylaspartic acid (RGD) tripeptide as a motif for improved cell adhesion and targeting. The product (DCC-RGD) self-assembled into a more elongated nanofibrillar structure through lateral and end-to-end association. When added into poly(ethylene imine) (PEI)/pDNA polyplex solution, nanocelluloses interacted electrostatically with positively charged polyplexes without affecting their integrity. The constructs were tested for their potentials as non-viral transfection reagents. Cell viability and transfection efficiency of fibroblast NIH3T3 cells were monitored as a function of CNC concentration where, in general, viability increased as the CNC concentration increased, and transfection efficiency could be optimized. Using wild-type MDCK and αV-knockout MDCK cells, the construct was able to provide targeted uptake of polyplexes. The findings have potential applications, for example, cell-selective in vitro or ex vivo transfection of autologous mesenchymal stem cells for cell therapy, or bottom-up design of future innovative biomaterials.
Kokoelmat
- Avoin saatavuus [34164]