Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fragmentary multi-instance classification

Wu, Jie; Zhuge, Wenzhang; Liu, Xinwang; Liu, Li; Hou, Chenping (2019-09-20)

 
Avaa tiedosto
nbnfi-fe2019121046462.pdf (1.798Mt)
nbnfi-fe2019121046462_meta.xml (32.84Kt)
nbnfi-fe2019121046462_solr.xml (36.15Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCYB.2019.2938206

Wu, Jie
Zhuge, Wenzhang
Liu, Xinwang
Liu, Li
Hou, Chenping
Institute of Electrical and Electronics Engineers
20.09.2019

J. Wu, W. Zhuge, X. Liu, L. Liu and C. Hou, "Fragmentary Multi-Instance Classification," in IEEE Transactions on Cybernetics, vol. 51, no. 10, pp. 5156-5169, Oct. 2021, doi: 10.1109/TCYB.2019.2938206

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCYB.2019.2938206
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019121046462
Tiivistelmä

Abstract

Multi-instance learning (MIL) has been extensively applied to various real tasks involving objects with bags of instances, such as in drugs and images. Previous studies on MIL assume that data are entirely complete. However, in many real tasks, the instance is fragmentary. In this article, we present probably the first study on multi-instance classification with fragmentary data. In our proposed framework, called fragmentary multi-instance classification (FIC), the fragmentary data are completed and the multi-instance classifier is learned jointly. To facilitate the integration between the completion and classifier learning, FIC establishes the weighting mechanism to measure the importance levels of different instances. To validate the compatibility of our framework, four typical MIL methods, including multi-instance support vector machine (MI-SVM), expectation maximization diverse density (EM-DD), citation-K nearest neighbors (Citation-KNNs), and MIL with discriminative bag mapping (MILDM), are embedded into the framework to obtain the corresponding FIC versions. As an illustration, an efficient solving algorithm is developed to address the problem for MI-SVM, together with the proof of convergence behavior. The experimental results on various types of real-world datasets demonstrate the effectiveness.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen