Defect‐driven enhancement of electrochemical oxygen evolution on Fe–Co–Al ternary hydroxides
Sun, Yixuan; Xia, Yuanyuan; Kuai, Long; Sun, Hongxia; Cao, Wei; Huttula, Marko; Honkanen, Ari-Pekka; Viljanen, Mira; Huotari, Simo; Geng, Baoyou (2019-04-24)
Y. Sun, Y. Xia, L. Kuai, H. Sun, W. Cao, M. Huttula, A.-P. Honkanen, M. Viljanen, S. Huotari, B. Geng, ChemSusChem 2019, 12, 2564. https://doi.org/10.1002/cssc.201900831
© 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. This is the peer reviewed version of the following article: Y. Sun, Y. Xia, L. Kuai, H. Sun, W. Cao, M. Huttula, A.-P. Honkanen, M. Viljanen, S. Huotari, B. Geng, ChemSusChem 2019, 12, 2564, which has been published in final form at https://doi.org/10.1002/cssc.201900831. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe2019091728455
Tiivistelmä
Abstract
Efficient, abundant and low‐cost catalysts for the oxygen evolution reaction (OER) are required for energy conversion and storage. In this study, a doping–etching route has been developed to access defect rich Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution. After partial etching of Al, ultrathin Fe3Co2Al2‐AE electrocatalysts with a rich pore structure are obtained with a shift of the cobalt valence state towards higher valence (Co2+→Co3+), along with a substantial improvement in the catalytic performance. Fe3Co2Al2‐AE shows a notably lower overpotential of only 284 mV at a current density of 10 mA cm−2 and double the OER mass activity of the etching‐free Fe3Co2Al2 with an overpotential of 350 mV. Density functional theory shows the leaching of Al changes the rate‐determining step of the OER from conversion of *OOH into O2 on Fe3Co2Al2 to formation of OOH from *O on the Al‐defective catalysts. This work demonstrates an effective route to design and synthesize transition metal electrocatalysts and provides a promising alternative for the further development of oxygen evolution catalysts.
Kokoelmat
- Avoin saatavuus [34164]