Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effect of worker learning on scheduling jobs in a hybrid flow shop : a bi-objective approach

Pargar, Farzad; Zandieh, Mostafa; Kauppila, Osmo; Kujala, Jaakko (2018-03-15)

 
Avaa tiedosto
nbnfi-fe2018100937891.pdf (1.861Mt)
nbnfi-fe2018100937891_meta.xml (34.73Kt)
nbnfi-fe2018100937891_solr.xml (31.86Kt)
Lataukset: 

URL:
https://doi.org/10.1007/s11518-018-5361-0

Pargar, Farzad
Zandieh, Mostafa
Kauppila, Osmo
Kujala, Jaakko
Springer Nature
15.03.2018

Pargar, F., Zandieh, M., Kauppila, O. et al. J. Syst. Sci. Syst. Eng. (2018) 27: 265. https://doi.org/10.1007/s11518-018-5361-0

https://rightsstatements.org/vocab/InC/1.0/
© Systems Engineering Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018. This is a post-peer-review, pre-copyedit version of an article published in J. Syst. Sci. Syst. Eng. The final authenticated version is available online at: https://doi.org/10.1007/s11518-018-5361-0.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/s11518-018-5361-0
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018100937891
Tiivistelmä

Abstract

This paper studies learning effect as a resource utilization technique that can model improvement in worker’s ability as a result of repeating similar tasks. By considering learning of workers while performing setup times, a schedule can be determined to place jobs that share similar tools and fixtures next to each other. The purpose of this paper is to schedule a set of jobs in a hybrid flow shop (HFS) environment with learning effect while minimizing two objectives that are in conflict: namely maximum completion time (makespan) and total tardiness. Minimizing makespan is desirable from an internal efficiency viewpoint, but may result in individual jobs being scheduled past their due date, causing customer dissatisfaction and penalty costs. A bi-objective mixed integer programming model is developed, and the complexity of the developed bi-objective model is compared against the bi-criteria one through numerical examples. The effect of worker learning on the structure of assigned jobs to machines and their sequences is analyzed. Two solution methods based on the hybrid water flow like algorithm and non-dominated sorting and ranking concepts are proposed to solve the problem. The quality of the approximated sets of Pareto solutions is evaluated using several performance criteria. The results show that the proposed algorithms with learning effect perform well in reducing setup times and eliminate the need for setups itself through proper scheduling.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen