Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Toward bridging microexpressions from different domains

Zong, Yuan; Zheng, Wenming; Cui, Zhen; Zhao, Guoying; Hu, Bin (2019-06-07)

 
Avaa tiedosto
nbnfi-fe2019120445593.pdf (1.537Mt)
nbnfi-fe2019120445593_meta.xml (36.81Kt)
nbnfi-fe2019120445593_solr.xml (40.33Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCYB.2019.2914512

Zong, Yuan
Zheng, Wenming
Cui, Zhen
Zhao, Guoying
Hu, Bin
Institute of Electrical and Electronics Engineers
07.06.2019

Y. Zong, W. Zheng, Z. Cui, G. Zhao and B. Hu, "Toward Bridging Microexpressions From Different Domains," in IEEE Transactions on Cybernetics, vol. 50, no. 12, pp. 5047-5060, Dec. 2020, doi: 10.1109/TCYB.2019.2914512

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCYB.2019.2914512
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019120445593
Tiivistelmä

Abstract

Recently, microexpression recognition has attracted a lot of researchers’ attention due to its challenges and valuable applications. However, it is noticed that currently most of the existing proposed methods are often evaluated and tested on the single database and, hence, this brings us a question whether these methods are still effective if the training and testing samples belong to different domains, for example, different microexpression databases. In this case, a large feature distribution difference may exist between training (source) and testing (target) samples and, hence, microexpression recognition tasks would become more difficult. To solve this challenging problem, that is, cross-domain microexpression recognition, in this paper, we propose an effective method consisting of an auxiliary set selection model (ASSM) and a transductive transfer regression model (TTRM). In our method, an ASSM is designed to automatically select an optimal set of samples from the target domain to serve as the auxiliary set, which is used for subsequent TTRM training. As for TTRM, it aims at bridging the feature distribution gap between the source and target domains by learning a joint regression model with the source domain samples and the auxiliary set selected from the target domain. We evaluate the proposed TTRM plus ASSM by extensive cross-domain microexpression recognition experiments on SMIC and CASME II databases. Compared with the recent state-of-the-art domain adaptation methods, our proposed method has a more satisfactory performance in dealing with the cross-domain microexpression recognition tasks.

Kokoelmat
  • Avoin saatavuus [38319]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen