Boundary regularity under generalized growth conditions
Harjulehto, Petteri; Hästö, Peter (2019-01-07)
Harjulehto, Petteri
Hästö, Peter
European Mathematical Society Publishing House
07.01.2019
Harjulehto Petteri, Hästö Peter: Boundary Regularity under Generalized Growth Conditions. Z. Anal. Anwend. 38 (2019), 73-96. doi: 10.4171/ZAA/1628
https://rightsstatements.org/vocab/InC/1.0/
© 2019 EMS Publishing House. All rights reserved.
https://rightsstatements.org/vocab/InC/1.0/
© 2019 EMS Publishing House. All rights reserved.
https://rightsstatements.org/vocab/InC/1.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019040110644
https://urn.fi/URN:NBN:fi-fe2019040110644
Tiivistelmä
Abstract
We study the Dirichlet ϕ-energy integral with Sobolev boundary values. The function ϕ has generalized Orlicz growth. Special cases include variable exponent and double phase growths. We show that minimizers are regular at the boundary provided a weak capacity fatness condition is satisfied. This condition is satisfied for instance if the boundary is Lipschitz. The results are new even for Orlicz spaces.
Kokoelmat
- Avoin saatavuus [34161]