Hypertranscendence and algebraic independence of certain infinite products
Bundschuh, Peter; Väänänen , Keijo (2018-03-09)
Bundschuh, Peter
Väänänen , Keijo
Polish Academy of Sciences
09.03.2018
Bundschuh, P., Väänänen, K. (2018) Hypertranscendence and algebraic independence of certain infinite products. Acta Arithmetica, 184 (1), 51-66. doi:10.4064/aa170528-16-12
https://rightsstatements.org/vocab/InC/1.0/
© Instytut Matematyczny PAN, 2018.
https://rightsstatements.org/vocab/InC/1.0/
© Instytut Matematyczny PAN, 2018.
https://rightsstatements.org/vocab/InC/1.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019032810244
https://urn.fi/URN:NBN:fi-fe2019032810244
Tiivistelmä
Abstract
We study infinite products \(F(z)=\prod_{j\ge0}p(z^{d^j})\), where \(d\ge2\) is an integer and \(p\in\mathbb{C}[z]\) with \(p(0)=1\) has at least one zero not lying on the unit circle. In that case, \(F\) is a transcendental function and we are mainly interested in conditions for its hypertranscendence. Moreover, we investigate finite sets of infinite products of type \(F\) and show that, under certain natural assumptios, these functions and their first derivatives are algebraically independent over \(\mathbb{C}(z)\).
Kokoelmat
- Avoin saatavuus [34598]