Highly transparent nanocomposites based on poly(vinyl alcohol) and sulfated UV-absorbing wood nanofibers
Sirviö, Juho Antti; Visanko, Miikka (2019-04-29)
Juho Antti Sirviö and Miikka Visanko, Biomacromolecules 2019 20 (6), 2413-2420, DOI: 10.1021/acs.biomac.9b00427
© 2019 American Chemical Society. This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
https://creativecommons.org/licenses/by/4.0/
https://urn.fi/URN:NBN:fi-fe2019062421593
Tiivistelmä
Abstract
Unbleached lignocellulose fibers were studied for the fabrication of wood-based UV-absorbing nanofibers and were used to produce transparent nanocomposites. Groundwood pulp (GWP) and sawdust were selected as raw materials thanks to their low processing degree of fibers and abundant availability as a low-value industrial side stream. Both materials were first sulfated using a reactive deep eutectic solvent. The sulfated wood and sawdust nanofibers (SWNFs and SSDNFs, respectively) were fabricated using a mild mechanical disintegration approach. As a reference material, sulfated cellulose nanofibers (SCNFs) were obtained from bleached cellulose pulp. Our results showed that both GWP and sawdust exhibited similar reactivity compared with bleached cellulose pulp, whereas the yields of sulfated lignin-containing pulps were notably higher. The diameters of both SWNFs and SSDNFs were approximately 3 nm, which was similar to those of the SCNFs. When 10 wt % of lignin-containing nanofibers were mixed together with poly(vinyl alcohol), the fabrication of nanocomposites with only a minimal decrease in transparency in the visible light spectrum was achieved. Transmission in the UV region, on the other hand, was significantly reduced by SWNFs and SSDNFs, whereas SCNFs had only a minor UV-absorbing property. Although the reinforcing effect of lignin-containing nanofibers was lower compared with that of SCNFs, it was comparable with those of other UV-absorbing additives reported in the literature. Overall, the wood-based UV-absorbing nanofibers could have a valuable use in optical applications such as lenses and optoelectronics.
Kokoelmat
- Avoin saatavuus [34547]