Carbocatalytic oxidative dehydrogenative couplings of (hetero)aryls by oxidized multi-walled carbon nanotubes in liquid phase
Wirtanen, Tom; Aikonen, Santeri; Muuronen, Mikko; Melchionna, Michele; Kemell, Marianna; Davodi, Fatemeh; Kallio, Tanja; Hu, Tao; Helaja, Juho (2019-07-23)
T. Wirtanen, S. Aikonen, M. Muuronen, M. Melchionna, M. Kemell, F. Davodi, T. Kallio, T. Hu, J. Helaja, Chem. Eur. J. 2019, 25, 12288. https://doi.org/10.1002/chem.201903054
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the peer reviewed version of the following article: T. Wirtanen, S. Aikonen, M. Muuronen, M. Melchionna, M. Kemell, F. Davodi, T. Kallio, T. Hu, J. Helaja, Chem. Eur. J. 2019, 25, 12288, which has been published in final form at https://doi.org/10.1002/chem.201903054. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe2019103035869
Tiivistelmä
Abstract
HNO3‐oxidized carbon nanotubes catalyze oxidative dehydrogenative (ODH) carbon–carbon bond formation between electron‐rich (hetero)aryls with O2 as a terminal oxidant. The recyclable carbocatalytic method provides a convenient and an operationally easy synthetic protocol for accessing various benzofused homodimers, biaryls, triphenylenes, and related benzofused heteroaryls that are highly useful frameworks for material chemistry applications. Carbonyls/quinones are the catalytically active site of the carbocatalyst as indicated by model compounds and titration experiments. Further investigations of the reaction mechanism with a combination of experimental and DFT methods support the competing nature of acid‐catalyzed and radical cationic ODHs, and indicate that both mechanisms operate with the current material.
Kokoelmat
- Avoin saatavuus [34624]