Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mean-field game theoretic edge caching in ultra-dense networks

Kim, Hyesung; Park, Jihong; Bennis, Mehdi; Kim, Seong-Lyun; Debbah, Mérouane (2019-11-12)

 
Avaa tiedosto
nbnfi-fe2019121046500.pdf (25.28Mt)
nbnfi-fe2019121046500_meta.xml (34.06Kt)
nbnfi-fe2019121046500_solr.xml (35.97Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TVT.2019.2953132

Kim, Hyesung
Park, Jihong
Bennis, Mehdi
Kim, Seong-Lyun
Debbah, Mérouane
Institute of Electrical and Electronics Engineers
12.11.2019

H. Kim, J. Park, M. Bennis, S. Kim and M. Debbah, "Mean-Field Game Theoretic Edge Caching in Ultra-Dense Networks," in IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 935-947, Jan. 2020. https://doi.org/10.1109/TVT.2019.2953132

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TVT.2019.2953132
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019121046500
Tiivistelmä

Abstract

This paper investigates a cellular edge caching problem under a very large number of small base stations (SBSs) and users. In this ultra-dense edge caching network (UDCN), conventional caching algorithms are inapplicable as their computational complexity increases with the number of small base stations (SBSs). Furthermore, the performance of UDCN is highly sensitive to the dynamics of user demand. To overcome such difficulties, we propose a distributed caching algorithm under a stochastic geometric network model, as well as a spatio-temporal user demand model that characterizes the content popularity dynamics. By leverage mean-field game (MFG) theory, the complexity of the proposed UDCN caching algorithm becomes independent of the number of SBSs. Numerical evaluations validate this consistent complexity of the proposed algorithm with respect to the number of SBSs. Also, it shows that the proposed caching algorithm reduces not only the long run average cost of the network but also the redundant cached data respectively by 24% and 42%, compared to a baseline caching algorithm. Additionally, the simulation results show that the proposed caching algorithm is robust to imperfect popularity information, while ensuring a low computational complexity.

Kokoelmat
  • Avoin saatavuus [37887]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen