Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Summarization of user-generated sports video by using deep action recognition features

Tejero-de-Pablos, Antonio; Nakashima, Yuta; Sato, Tomokazu; Yokoya, Naokazu; Linna, Marko; Rahtu, Esa (2018-08-01)

 
Avaa tiedosto
nbnfi-fe2019060418414.pdf (6.191Mt)
nbnfi-fe2019060418414_meta.xml (38.55Kt)
nbnfi-fe2019060418414_solr.xml (40.68Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TMM.2018.2794265

Tejero-de-Pablos, Antonio
Nakashima, Yuta
Sato, Tomokazu
Yokoya, Naokazu
Linna, Marko
Rahtu, Esa
Institute of Electrical and Electronics Engineers
01.08.2018

A. Tejero-de-Pablos, Y. Nakashima, T. Sato, N. Yokoya, M. Linna and E. Rahtu, "Summarization of User-Generated Sports Video by Using Deep Action Recognition Features," in IEEE Transactions on Multimedia, vol. 20, no. 8, pp. 2000-2011, Aug. 2018. doi: 10.1109/TMM.2018.2794265

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TMM.2018.2794265
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019060418414
Tiivistelmä

Abstract

Automatically generating a summary of a sports video poses the challenge of detecting interesting moments, or highlights, of a game. Traditional sports video summarization methods leverage editing conventions of broadcast sports video that facilitate the extraction of high-level semantics. However, user-generated videos are not edited and, thus, traditional methods are not suitable to generate a summary. In order to solve this problem, this paper proposes a novel video summarization method that uses players’ actions as a cue to determine the highlights of the original video. A deep neural-network-based approach is used to extract two types of action-related features and to classify video segments into interesting or uninteresting parts. The proposed method can be applied to any sports in which games consist of a succession of actions. Especially, this paper considers the case of Kendo (Japanese fencing) as an example of a sport to evaluate the proposed method. The method is trained using Kendo videos with ground truth labels that indicate the video highlights. The labels are provided by annotators possessing a different experience with respect to Kendo to demonstrate how the proposed method adapts to different needs. The performance of the proposed method is compared with several combinations of different features, and the results show that it outperforms previous summarization methods.

Kokoelmat
  • Avoin saatavuus [38549]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen