Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analyzing the group sparsity based on the rank minimization methods

Zha, Zhiyuan; Liu, Xin; Huang, Xiaohua; Shi, Henglin; Xu, Yingyue; Wang, Qiong; Tang, Lan; Zhang, Xinggan (2017-07-10)

 
Avaa tiedosto
nbnfi-fe201902226054.pdf (1.872Mt)
nbnfi-fe201902226054_meta.xml (42.80Kt)
nbnfi-fe201902226054_solr.xml (36.55Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICME.2017.8019334

Zha, Zhiyuan
Liu, Xin
Huang, Xiaohua
Shi, Henglin
Xu, Yingyue
Wang, Qiong
Tang, Lan
Zhang, Xinggan
Institute of Electrical and Electronics Engineers
10.07.2017

Z. Zha et al., "Analyzing the group sparsity based on the rank minimization methods," 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, 2017, pp. 883-888. doi: 10.1109/ICME.2017.8019334

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICME.2017.8019334
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902226054
Tiivistelmä

Abstract

Sparse coding has achieved a great success in various image processing studies. However, there is not any benchmark to measure the sparsity of image patch/group because sparse discriminant conditions cannot keep unchanged. This paper analyzes the sparsity of group based on the strategy of the rank minimization. Firstly, an adaptive dictionary for each group is designed. Then, we prove that group-based sparse coding is equivalent to the rank minimization problem, and thus the sparse coefficients of each group are measured by estimating the singular values of each group. Based on that measurement, the weighted Schatten p-norm minimization (WSNM) has been found to be the closest solution to the real singular values of each group. Thus, WSNM can be equivalently transformed into a non-convex ℓp-norm minimization problem in group-based sparse coding. Experimental results on two applications: image in painting and image compressive sensing (CS) recovery show that the proposed scheme outperforms many state-of-the-art methods.

Kokoelmat
  • Avoin saatavuus [38697]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen