Microfluidic microwave sensor for detecting saline in biological range
Kilpijärvi, Joni; Halonen, Niina; Juuti, Jari; Hannu, Jari (2019-02-17)
Kilpijärvi, J.; Halonen, N.; Juuti, J.; Hannu, J. Microfluidic Microwave Sensor for Detecting Saline in Biological Range. Sensors 2019, 19, 819. https://doi.org/10.3390/s19040819
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
https://urn.fi/URN:NBN:fi-fe2019040411047
Tiivistelmä
Abstract
A device for measuring biological small volume liquid samples in real time is appealing. One way to achieve this is by using a microwave sensor based on reflection measurement. A prototype sensor was manufactured from low cost printed circuit board (PCB) combined with a microfluidic channel made of polymethylsiloxane (PDMS). Such a sensor was simulated, manufactured, and tested including a vacuum powered sample delivery system with robust fluidic ports. The sensor had a broad frequency band from 150 kHz to 6 GHz with three resonance frequencies applied in sensing. As a proof of concept, the sensor was able to detect a NaCl content of 125 to 155 mmol in water, which is the typical concentration in healthy human blood plasma.
Kokoelmat
- Avoin saatavuus [34516]