Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning to detect genuine versus posed pain from facial expressions using residual generative adversarial networks

Tavakolian, Mohammad; Cruces, Carlos Guillermo Bermudez; Hadid, Abdenour (2019-07-11)

 
Avaa tiedosto
nbnfi-fe2019121848691.pdf (3.356Mt)
nbnfi-fe2019121848691_meta.xml (31.15Kt)
nbnfi-fe2019121848691_solr.xml (29.94Kt)
Lataukset: 

URL:
https://doi.org/10.1109/FG.2019.8756540

Tavakolian, Mohammad
Cruces, Carlos Guillermo Bermudez
Hadid, Abdenour
Institute of Electrical and Electronics Engineers
11.07.2019

M. Tavakolian, C. G. Bermudez Cruces and A. Hadid, "Learning to Detect Genuine versus Posed Pain from Facial Expressions using Residual Generative Adversarial Networks," 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 2019, pp. 1-8. doi: 10.1109/FG.2019.8756540

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/FG.2019.8756540
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019121848691
Tiivistelmä

Abstract

We present a novel approach based on Residual Generative Adversarial Network (R-GAN) to discriminate genuine pain expression from posed pain expression by magnifying the subtle changes in the face. In addition to the adversarial task, the discriminator network in R-GAN estimates the intensity level of the pain. Moreover, we propose a novel Weighted Spatiotemporal Pooling (WSP) to capture and encode the appearance and dynamic of a given video sequence into an image map. In this way, we are able to transform any video into an image map embedding subtle variations in the facial appearance and dynamics. This allows using any pre-trained model on still images for video analysis. Our extensive experiments show that our proposed framework achieves promising results compared to state-of-the-art approaches on three benchmark databases, i.e., UNBC-McMaster Shoulder Pain, BioVid Head Pain, and STOIC.

Kokoelmat
  • Avoin saatavuus [38358]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen