Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Absent multiple kernel learning algorithms

Liu, Xinwang; Wang, Lei; Zhu, Xinzhong; Li, Miaomiao; Zhu, En; Liu, Tongliang; Liu, Li; Dou, Yong; Yin, Jianping (2019-01-28)

 
Avaa tiedosto
nbnfi-fe201902256178.pdf (5.362Mt)
nbnfi-fe201902256178_meta.xml (42.80Kt)
nbnfi-fe201902256178_solr.xml (45.42Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TPAMI.2019.2895608

Liu, Xinwang
Wang, Lei
Zhu, Xinzhong
Li, Miaomiao
Zhu, En
Liu, Tongliang
Liu, Li
Dou, Yong
Yin, Jianping
Institute of Electrical and Electronics Engineers
28.01.2019

X. Liu et al., "Absent Multiple Kernel Learning Algorithms," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 6, pp. 1303-1316, 1 June 2020, doi: 10.1109/TPAMI.2019.2895608

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TPAMI.2019.2895608
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902256178
Tiivistelmä

Abstract

Multiple kernel learning (MKL) has been intensively studied during the past decade. It optimally combines the multiple channels of each sample to improve classification performance. However, existing MKL algorithms cannot effectively handle the situation where some channels of the samples are missing, which is not uncommon in practical applications. This paper proposes three absent MKL (AMKL) algorithms to address this issue. Different from existing approaches where missing channels are firstly imputed and then a standard MKL algorithm is deployed on the imputed data, our algorithms directly classify each sample based on its observed channels, without performing imputation. Specifically, we define a margin for each sample in its own relevant space, a space corresponding to the observed channels of that sample. The proposed AMKL algorithms then maximize the minimum of all sample-based margins, and this leads to a difficult optimization problem. We first provide two two-step iterative algorithms to approximately solve this problem. After that, we show that this problem can be reformulated as a convex one by applying the representer theorem. This makes it readily be solved via existing convex optimization packages. In addition, we provide a generalization error bound to justify the proposed AMKL algorithms from a theoretical perspective. Extensive experiments are conducted on nine UCI and six MKL benchmark datasets to compare the proposed algorithms with existing imputation-based methods. As demonstrated, our algorithms achieve superior performance and the improvement is more significant with the increase of missing ratio.

Kokoelmat
  • Avoin saatavuus [38404]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen