Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep canonical time warping for simultaneous alignment and representation learning of sequences

Trigeorgis, George; Nicolaou, Mihalis A.; Schuller, Björn W.; Zafeiriou, Stefanos (2017-06-08)

 
Avaa tiedosto
nbnfi-fe2019042613358.pdf (3.656Mt)
nbnfi-fe2019042613358_meta.xml (33.56Kt)
nbnfi-fe2019042613358_solr.xml (37.87Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TPAMI.2017.2710047

Trigeorgis, George
Nicolaou, Mihalis A.
Schuller, Björn W.
Zafeiriou, Stefanos
Institute of Electrical and Electronics Engineers
08.06.2017

G. Trigeorgis, M. A. Nicolaou, B. W. Schuller and S. Zafeiriou, "Deep Canonical Time Warping for Simultaneous Alignment and Representation Learning of Sequences," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5, pp. 1128-1138, 1 May 2018. doi: 10.1109/TPAMI.2017.2710047

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TPAMI.2017.2710047
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019042613358
Tiivistelmä

Abstract

Machine learning algorithms for the analysis of time-series often depend on the assumption that utilised data are temporally aligned. Any temporal discrepancies arising in the data is certain to lead to ill-generalisable models, which in turn fail to correctly capture properties of the task at hand. The temporal alignment of time-series is thus a crucial challenge manifesting in a multitude of applications. Nevertheless, the vast majority of algorithms oriented towards temporal alignment are either applied directly on the observation space or simply utilise linear projections-thus failing to capture complex, hierarchical non-linear representations that may prove beneficial, especially when dealing with multi-modal data (e.g., visual and acoustic information). To this end, we present Deep Canonical Time Warping (DCTW), a method that automatically learns non-linear representations of multiple time-series that are (i) maximally correlated in a shared subspace, and (ii) temporally aligned. Furthermore, we extend DCTW to a supervised setting, where during training, available labels can be utilised towards enhancing the alignment process. By means of experiments on four datasets, we show that the representations learnt significantly outperform state-of-the-art methods in temporal alignment, elegantly handling scenarios with heterogeneous feature sets, such as the temporal alignment of acoustic and visual information.

Kokoelmat
  • Avoin saatavuus [37688]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen