Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Face liveness detection by rPPG features and contextual patch-based CNN

Lin, Bofan; Yu, Zitong; Li, Xiaobai; Zhao, Guoying (2019-05-30)

 
Avaa tiedosto
nbnfi-fe2019090627072.pdf (461.4Kt)
nbnfi-fe2019090627072_meta.xml (32.76Kt)
nbnfi-fe2019090627072_solr.xml (27.74Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3345336.3345345

Lin, Bofan
Yu, Zitong
Li, Xiaobai
Zhao, Guoying
Association for Computing Machinery
30.05.2019

Bofan Lin, Xiaobai Li, Zitong Yu, and Guoying Zhao. 2019. Face Liveness Detection by rPPG Features and Contextual Patch-Based CNN. In Proceedings of the 2019 3rd International Conference on Biometric Engineering and Applications (ICBEA 2019). ACM, New York, NY, USA, 61-68. DOI: https://doi.org/10.1145/3345336.3345345

https://rightsstatements.org/vocab/InC/1.0/
© 2019 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of the 2019 3rd International Conference on Biometric Engineering and Applications (ICBEA 2019), https://doi.org/10.1145/3345336.3345345.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3345336.3345345
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019090627072
Tiivistelmä

Abstract

Face anti-spoofing plays a vital role in security systems including face payment systems and face recognition systems. Previous studies showed that live faces and presentation attacks have significant differences in both remote photoplethysmography (rPPG) and texture information, we propose a generalized method exploiting both rPPG and texture features for face anti-spoofing task. First, multi-scale long-term statistical spectral (MS-LTSS) features with variant granularities are designed for representation of rPPG information. Second, a contextual patch-based convolutional neural network (CP-CNN) is used for extracting global-local and multi-level deep texture features simultaneously. Finally, weight summation strategy is employed for decision level fusion, which helps to generalize the method for not only print attack and replay attack but also mask attack. Comprehensive experiments were conducted on five databases, namely 3DMAD, HKBU-Mars VI, MSU-MFSD, CASIA-FASD, and OULU-NPU, to show the superior results of the proposed method compared with state-of-the-art methods.

Kokoelmat
  • Avoin saatavuus [37887]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen