Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A visually guided framework for lung segmentation and visualization in chest CT images

Lan, Shouren; Liu, Xin; Wang, Lisheng; Cui, Chaoyi (2018-03-01)

 
Avaa tiedosto
nbnfi-fe2019041712650.pdf (6.701Mt)
nbnfi-fe2019041712650_meta.xml (33.01Kt)
nbnfi-fe2019041712650_solr.xml (35.98Kt)
Lataukset: 

URL:
https://doi.org/10.1166/jmihi.2018.2325

Lan, Shouren
Liu, Xin
Wang, Lisheng
Cui, Chaoyi
American Scientific Publishers
01.03.2018

Lan, S., Liu, X., Wang, L., Cui, C. (2018) A Visually Guided Framework for Lung Segmentation and Visualization in Chest CT Images. Journal of Medical Imaging and Health Informatics, 8 (3), 485-493. doi:10.1166/jmihi.2018.2325

https://rightsstatements.org/vocab/InC/1.0/
© 2018 American Scientific Publishing. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Journal of Medical Imaging and Health Informatics, http://dx.doi.org/10.1166/jmihi.2018.2325.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1166/jmihi.2018.2325
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019041712650
Tiivistelmä

Abstract

Lung cancer is the leading cause of cancer-related death worldwide and this also stimulates the development of various computer-aided diagnosis (CAD) systems. But the conventional lung segmentation methods can’t satisfy the needs of the clinicians in lung cancer diagnosis and surgery. It is very important to provide a segmentation and visualization framework for the clinicians instead of radiologists in outpatient service. Therefore we propose a visually guided method based on a 2D feature space and spatial connectivity computation to reduce the dependence on the radiologists for lung segmentation and visualization. Our framework consists of three main processing steps. Firstly, a 2D feature space of CT scalar versus gradient magnitude is constructed. Secondly, the attribute distribution region of the lungs is selected in the 2D feature space, and then the lungs are extracted from the determined voxels by spatial connectivity computation. Finally, the lungs and pulmonary nodules are visualized simultaneously with different colors and opacities in volume rendering. Experimental results show that the proposed framework is efficient for outpatient service and can provide an intuitive segmentation process and nodules information.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen