Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multimodal framework for analyzing the affect of a group of people

Huang, Xiaohua; Dhall, Abhinav; Goecke, Roland; Pietikäinen, Matti; Zhao, Guoying (2018-03-23)

 
Avaa tiedosto
nbnfi-fe2019040511211.pdf (1.534Mt)
nbnfi-fe2019040511211_meta.xml (37.23Kt)
nbnfi-fe2019040511211_solr.xml (37.70Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TMM.2018.2818015

Huang, Xiaohua
Dhall, Abhinav
Goecke, Roland
Pietikäinen, Matti
Zhao, Guoying
Institute of Electrical and Electronics Engineers
23.03.2018

X. Huang, A. Dhall, R. Goecke, M. Pietikäinen and G. Zhao, "Multimodal Framework for Analyzing the Affect of a Group of People," in IEEE Transactions on Multimedia, vol. 20, no. 10, pp. 2706-2721, Oct. 2018. doi: 10.1109/TMM.2018.2818015

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TMM.2018.2818015
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019040511211
Tiivistelmä

Abstract

With the advances in multimedia and the world wide web, users upload millions of images and videos everyone on social networking platforms on the Internet. From the perspective of automatic human behavior understanding, it is of interest to analyze and model the affects that are exhibited by groups of people who are participating in social events in these images. However, the analysis of the affect that is expressed by multiple people is challenging due to the varied indoor and outdoor settings. Recently, a few interesting works have investigated face-based group-level emotion recognition (GER). In this paper, we propose a multimodal framework for enhancing the affective analysis ability of GER in challenging environments. Specifically, for encoding a person’s information in a group-level image, we first propose an information aggregation method for generating feature descriptions of face, upper body, and scene. Later, we revisit localized multiple kernel learning for fusing face, upper body, and scene information for GER against challenging environments. Intensive experiments are performed on two challenging group-level emotion databases (HAPPEI and GAFF) to investigate the roles of the face, upper body, scene information, and the multimodal framework. Experimental results demonstrate that the multimodal framework achieves promising performance for GER.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen