Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

End-to-end multimodal emotion recognition using deep neural networks

Tzirakis, Panagiotis; Trigeorgis, George; Nicolaou, Mihalis A.; Schuller, Bjorn W.; Zafeiriou, Stefanos (2017-10-08)

 
Avaa tiedosto
nbnfi-fe201902276476.pdf (684.2Kt)
nbnfi-fe201902276476_meta.xml (33.58Kt)
nbnfi-fe201902276476_solr.xml (39.75Kt)
Lataukset: 

URL:
https://doi.org/10.1109/JSTSP.2017.2764438

Tzirakis, Panagiotis
Trigeorgis, George
Nicolaou, Mihalis A.
Schuller, Bjorn W.
Zafeiriou, Stefanos
Institute of Electrical and Electronics Engineers
08.10.2017

P. Tzirakis, G. Trigeorgis, M. A. Nicolaou, B. W. Schuller and S. Zafeiriou, "End-to-End Multimodal Emotion Recognition Using Deep Neural Networks," in IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 8, pp. 1301-1309, Dec. 2017. doi: 10.1109/JSTSP.2017.2764438

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/JSTSP.2017.2764438
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902276476
Tiivistelmä

Abstract

Automatic affect recognition is a challenging task due to the various modalities emotions can be expressed with. Applications can be found in many domains including multimedia retrieval and human-computer interaction. In recent years, deep neural networks have been used with great success in determining emotional states. Inspired by this success, we propose an emotion recognition system using auditory and visual modalities. To capture the emotional content for various styles of speaking, robust features need to be extracted. To this purpose, we utilize a convolutional neural network (CNN) to extract features from the speech, while for the visual modality a deep residual network of 50 layers is used. In addition to the importance of feature extraction, a machine learning algorithm needs also to be insensitive to outliers while being able to model the context. To tackle this problem, long short-term memory networks are utilized. The system is then trained in an end-to-end fashion where-by also taking advantage of the correlations of each of the streams-we manage to significantly outperform, in terms of concordance correlation coefficient, traditional approaches based on auditory and visual handcrafted features for the prediction of spontaneous and natural emotions on the RECOLA database of the AVEC 2016 research challenge on emotion recognition.

Kokoelmat
  • Avoin saatavuus [37887]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen