Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic task offloading and resource allocation for ultra-reliable low-latency edge computing

Liu, Chen-Feng; Bennis, Mehdi; Debbah, Mérouane; Poor, H. Vincent (2019-02-11)

 
Avaa tiedosto
nbnfi-fe2019121046448.pdf (6.782Mt)
nbnfi-fe2019121046448_meta.xml (31.68Kt)
nbnfi-fe2019121046448_solr.xml (36.70Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCOMM.2019.2898573

Liu, Chen-Feng
Bennis, Mehdi
Debbah, Mérouane
Poor, H. Vincent
Institute of Electrical and Electronics Engineers
11.02.2019

C. Liu, M. Bennis, M. Debbah and H. V. Poor, "Dynamic Task Offloading and Resource Allocation for Ultra-Reliable Low-Latency Edge Computing," in IEEE Transactions on Communications, vol. 67, no. 6, pp. 4132-4150, June 2019. doi: 10.1109/TCOMM.2019.2898573

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCOMM.2019.2898573
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019121046448
Tiivistelmä

Abstract

To overcome devices’ limitations in performing computation-intense applications, mobile edge computing (MEC) enables users to offload tasks to proximal MEC servers for faster task computation. However, the current MEC system design is based on average-based metrics, which fails to account for the ultra-reliable low-latency requirements in mission-critical applications. To tackle this, this paper proposes a new system design, where probabilistic and statistical constraints are imposed on task queue lengths, by applying extreme value theory. The aim is to minimize users’ power consumption while trading off the allocated resources for local computation and task offloading. Due to wireless channel dynamics, users are reassociated to MEC servers in order to offload tasks using higher rates or accessing proximal servers. In this regard, a user-server association policy is proposed, taking into account the channel quality as well as the servers’ computation capabilities and workloads. By marrying tools from Lyapunov optimization and matching theory, a two-timescale mechanism is proposed, where a user-server association is solved in the long timescale, while a dynamic task offloading and resource allocation policy are executed in the short timescale. The simulation results corroborate the effectiveness of the proposed approach by guaranteeing highly reliable task computation and lower delay performance, compared to several baselines.

Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen