Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Face antispoofing using speeded-up robust features and Fisher vector encoding

Boulkenafet, Zinelabidine; Komulainen, Jukka; Hadid, Abdenour (2016-11-18)

 
Avaa tiedosto
nbnfi-fe2019091328126.pdf (169.5Kt)
nbnfi-fe2019091328126_meta.xml (29.39Kt)
nbnfi-fe2019091328126_solr.xml (32.22Kt)
Lataukset: 

URL:
https://doi.org/10.1109/LSP.2016.2630740

Boulkenafet, Zinelabidine
Komulainen, Jukka
Hadid, Abdenour
Institute of Electrical and Electronics Engineers
18.11.2016

Z. Boulkenafet, J. Komulainen and A. Hadid, "Face Antispoofing Using Speeded-Up Robust Features and Fisher Vector Encoding," in IEEE Signal Processing Letters, vol. 24, no. 2, pp. 141-145, Feb. 2017. doi: 10.1109/LSP.2016.2630740

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/LSP.2016.2630740
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019091328126
Tiivistelmä

Abstract

The vulnerabilities of face biometric authentication systems to spoofing attacks have received a significant attention during the recent years. Some of the proposed countermeasures have achieved impressive results when evaluated on intratests, i.e., the system is trained and tested on the same database. Unfortunately, most of these techniques fail to generalize well to unseen attacks, e.g., when the system is trained on one database and then evaluated on another database. This is a major concern in biometric antispoofing research that is mostly overlooked. In this letter, we propose a novel solution based on describing the facial appearance by applying Fisher vector encoding on speeded-up robust features extracted from different color spaces. The evaluation of our countermeasure on three challenging benchmark face-spoofing databases, namely the CASIA face antispoofing database, the replay-attack database, and MSU mobile face spoof database, showed excellent and stable performance across all the three datasets. Most importantly, in interdatabase tests, our proposed approach outperforms the state of the art and yields very promising generalization capabilities, even when only limited training data are used.

Kokoelmat
  • Avoin saatavuus [37957]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen