Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Human weapon-activity recognition in surveillance videos using structural-RNN

Susarla, Praneeth; Agrawal, Utkarsh; Jayagopi, Dinesh Babu (2018-03-27)

 
Avaa tiedosto
nbnfi-fe2019040310909.pdf (1.684Mt)
nbnfi-fe2019040310909_meta.xml (37.03Kt)
nbnfi-fe2019040310909_solr.xml (29.10Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3177148.3180080

Susarla, Praneeth
Agrawal, Utkarsh
Jayagopi, Dinesh Babu
Association for Computing Machinery
27.03.2018

Praneeth Susarla, Utkarsh Agrawal, and Dinesh Babu Jayagopi. 2018. Human Weapon-Activity Recognition in Surveillance Videos Using Structural-RNN. In Proceedings of Mediterranean Conference on Pattern Recognition and Artificial Intelligence, Rabat, Morocco, March 27–28, 2018 (MedPRAI ’18), 7 pages. https://doi.org/10.1145/3177148.3180080

https://rightsstatements.org/vocab/InC/1.0/
© 2018 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in MedPRAI '18 Proceedings of the 2nd Mediterranean Conference on Pattern Recognition and Artificial Intelligence, https://doi.org/10.1145/3177148.3180080.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3177148.3180080
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019040310909
Tiivistelmä

Abstract

In today’s world, video surveillance systems play a vital role in commercial and industrial environments. The important goal of a surveillance activity is to observe suspicious behavior of humans and objects in a scene using camera or other sensors. Most of the current surveillance systems perform such activities by identifying persons, tracking their individual paths independently, not in conjunction with the objects in the scene. However, in a real world surveillance scenario, the behavior of people and their interaction with objects need to be modeled to reason about suspicious activities. Our contribution, through this work is in using the state-of-the-art Structural Recurrent Neural Networks (SRNN) method to model the complex spatio-temporal human-object interactions in surveillance. Our best results have a final F₁ score of 87.3 on the human sub-activity recognition task and 82.7 on the object affordances recognition task. Our work considered weapons as objects of interest.

Kokoelmat
  • Avoin saatavuus [37559]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen