Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning-assisted optimization in mobile crowd sensing : a survey

Wang, Jingtao; Wang, Yasha; Zhang, Daqing; Goncalves, Jorge; Ferreira, Denzil; Visuri, Aku; Ma, Sen (2018-09-04)

 
Avaa tiedosto
nbnfi-fe2019040110651.pdf (1.417Mt)
nbnfi-fe2019040110651_meta.xml (38.14Kt)
nbnfi-fe2019040110651_solr.xml (36.74Kt)
Lataukset: 

URL:
https://dx.doi.org/10.1109/TII.2018.2868703

Wang, Jingtao
Wang, Yasha
Zhang, Daqing
Goncalves, Jorge
Ferreira, Denzil
Visuri, Aku
Ma, Sen
Institute of Electrical and Electronics Engineers
04.09.2018

Wang, J., Wang, Y., Zhang, D., Goncalves, J., Ferreira, D., Visuri, A., Ma, S. (2019) Learning-Assisted Optimization in Mobile Crowd Sensing: A Survey. IEEE Transactions on Industrial Informatics, 15 (1), 15-22. doi:10.1109/TII.2018.2868703

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TII.2018.2868703
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019040110651
Tiivistelmä

Abstract

Mobile crowd sensing (MCS) is a relatively new paradigm for collecting real-time and location-dependent urban sensing data. Given its applications, it is crucial to optimize the MCS process with the objective of maximizing the sensing quality and minimizing the sensing cost. While earlier studies mainly tackle this issue by designing different combinatorial optimization algorithms, there is a new trend to further optimize MCS by integrating learning techniques to extract knowledge, such as participants’ behavioral patterns or sensing data correlation. In this paper, we perform an extensive literature review of learning-assisted optimization approaches in MCS. Specifically, from the perspective of the participant and the task, we organize the existing work into a conceptual framework, present different learning and optimization methods, and describe their evaluation. Furthermore, we discuss how different techniques can be combined to form a complete solution. In the end, we point out existing limitations, which can inform and guide future research directions.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen